skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leung, Meredith C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While there is high certainty that chronic coastal hazards like floodingand erosion, are increasing due to climate change induced sea-levelrise, there is high uncertainty surrounding the timing, intensity, andlocation of future hazard impacts. Assessments that quantify theseaspects of future hazards are critical for adaptation planning under achanging climate and can reveal new insights into the drivers of coastalhazards. In particular, probabilistic simulations of future hazardimpacts can improve these assessments by explicitly quantifyinguncertainty and by better simulating dependence structures between thecomplex multivariate drivers of hazards. In this study, a regional-scaleprobabilistic assessment of climate change induced coastal hazards isconducted for the Cascadia region, USA during the 21st century. Threeco-produced hazard proxies for beach safety, erosion, and flooding arequantified to identify areas of high hazard impacts and determine hazarduncertainty under three sea-level rise scenarios. A novel chroniccoastal hazard hotspot indicator is introduced that identifies areasthat may experience significant increases in hazard impacts compared topresent day conditions. We find that Southern Cascadia and NorthernWashington have larger hazard impacts and hazard uncertainty due totheir morphologic setting. Erosional hazards, relative to beach safetyand coastal flooding, will increase the most in Cascadia during the 21stcentury under all sea-level rise scenarios. Finally, we find that hazarduncertainty associated with wave and water level variability exceeds theuncertainty associated with sea-level-rise until the end of the century. 
    more » « less